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SUMMARY

This report provides an updated version of analytical documentation for the v072

Rotor Wake/Stator Interaction Code. It presents the theoretical derivation of the equations

used in the code and, where necessary, it documents the enhancements and changes made

to the original code since its first release.

v072 is a package of FORTRAN computer programs which calculate the in-duct acoustic

modes excited by a fan/stator stage operating in a subsonic mean flow. Sound is generated

by the stator vanes interacting with the mean wakes of the rotor blades. In this updated

version, only the tonal noise produced at the blade passing frequency and its harmonics, is

described. The broadband noise component analysis, which was part of the original report,

is not included here. The code provides outputs of modal pressure and power amplitudes

generated by the rotor-wake/stator interaction.

The rotor/stator stage is modeled as an ensemble of blades and vanes of zero camber

and thickness enclosed within an infinite hard-walled annular duct. The acoustic pressure

within the duct is calculated by distributing pressure dipoles on the surface of the stator

vanes and calculating the pressure at an arbitrary point within the duct via the normal

mode expansion of the Green's function for an annular duct. By this procedure one obtains

an infinite series for the sound pressure within the duct. Each term contains a normal mode

of the duct multiplied by the amplitude of that mode. The amplitude of each propagating

mode is computed and summed, with appropriate factors, to obtain the harmonics of sound

power flux within the duct. These calculations are carried through for both upstream and

downstream propagating modes.

No assumptions regarding the ratio of the wavelength of the sound generated to the

vane chord are required. However, to simplify the computation of the dipole distribution

generated by a given periodic inflow variation, the so-called strip theory approximation is

employed. Specifically, the dipole distribution is computed by deleting, from the convected

wave equation, all terms containing derivatives with respect to radius, but retaining the

radius as a parameter in the boundary conditions (which derive from the vane geometry

and the incident fluid flow). At each radius, therefore, the equations to be solved are
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those for a linear cascadein subsonicflow. Although radial derivatives are deleted from

the wave equation in calculating the chordwisepressuredistribution on the vanes,radial

variations in the amplitude and phaseof the pressuredistribution are taken into account in

integrating over the vane surfaceto obtain the amplitudes of the propagating duct modes.

The wake flow downstreamof the rotor is modeledas a small amplitude disturbance

flow, superimposedupon a steady mean flow. The mean part of the flow is assumedto

have no radial component, so that the mean flow stream surfacesare cylindrical. It is

further assumedthat if one of thesecylinders is unwrapped to form a plane, the meanflow

streamlineswill be parallel. This is equivalent to ignoring viscous diffusion in the rotor

wakes,a justifiable approximation as regards the calculation of the forces on the stator

vanes,provided that the wakethicknesschosenis that which is obtained at the axial station

of the stator vanesthemselves. The magnitude of the wake flow velocity is constant on

lines parallel to the mean flow streamlines,but varies periodically in the direction normal

to the mean flow streamlines.

--X--



CHAPTER 1

INTRODUCTION

1.1 Background

This report is a revision of the original analytical documentation for a rotor-wake/sta-

tor interaction computer code described in NASA contractor report, CR-167952. The code,

which was originally developed under contract to NASA by Bolt Beranek and Newman

Inc., was later revised and integrated into a fan noise prediction system by Pratt & Whit-

ney and renamed the v072 code. This report replaces Volume 1 of the original two-volume

documentation authored by Ventres et aL 1 Volume 2, "Computer Programs," of the same

set 2 is superseded by a revised technical documentation and user's manual written by

Topol and Mathews. 3 The current revision, while primarily a mathematical treatment,

should also enable a diligent reader to trace through the actual computer code without the

need for the old Volume 2.

This revision was necessary for several reasons. First, and most important, because

the original documentation preceded the actual release of the computer program, it did

not reflect many of the changes to the code. In particular, the geometry used for the code,

and, as a consequence, the resulting coded formulae, are different from those described in

the old Volume 1. Second, the original report covered, in addition to discrete-tone noise

sources produced by mean rotor wakes, broadband noise sources due to turbulent rotor

wakes. These broadband noise capabilities are included in other codes but are not part of

the v072 computer program. Finally, there have been several undocumented corrections

and enhancements to the code since it was first released.

Outside of the changes described above, most of the material in this revision has been

borrowed intact from the original documentation, although some of it has been rearranged

to improve the flow of the text. Where necessary, complete sections have been deleted

from the material. These include all of the discussion on broadband noise sources which,

as mentioned earlier, is not included in the computer program. These sections cover

modeling of the rotor turbulent wakes and their attendant acoustic response computations

(i.e., broadband noise spectrum and acoustic power). Therefore, with no further need for
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a general frequency treatment, all of the material in this revision is rewritten in terms of

discrete harmonics of the rotor blade passing frequency.

1.2 Overview

Given a description of the rotor and stator geometries and their operating conditions,

the v072 code calculates the modal content of the acoustic fields set up inside the inlet

and exhaust ducts of a turbofan by the actions of unsteady vortical velocity fluctuations

convected past the stator vanes. The results from this code, supplemented by mathematical

models of the impedance of the inlet and exhaust terminations, or coupled with stand-

alone radiation codes such as the one developed by Eversman, 4 can be used to calculate

the farfield noise. The program can also be used to provide the initial conditions required

for the investigation of duct liners, particularly liners tailored to suppress a specific mode

or set of modes.

In the context of discrete rotor/stator interaction noise, the fluctuating velocity field,

i.e., vortical flow, is caused by the periodic wakes of the upstream blade row of a fan

operating in front of an outlet guide vane. The fluctuations are assumed to be small

enough so as to be convected by the mean flow. When these velocity fluctuations are

carried past the rigid surface of a stator vane, the requirement of flow tangency sets up

acoustic pressure fluctuations, which propagate upstream and downstream in the duct,

and are perceived as noise.

The acoustic pressure in the duct can be calculated in a straightforward manner using

the Green's function for the duct, provided that the pressure distributions on the surface

of the stator vanes are known. If the Green's function is expressed as an infinite series

of the normal modes of the duct, the modal amplitudes of the acoustic pressure field

are obtained directly. The problem remaining, therefore, is to determine the pressure

distributions on the surface of the stator vanes generated by the convected vortical flow.

This is accomplished by modeling the vanes as surfaces of zero thickness and camber,

which support an unknown but continuous distribution of pressure dipoles. The normal

velocity on the vanes induced by the unknown dipole distribution is then required to

nullify the normal component of the vortical disturbance velocity so that the total fluid

velocity conforms to the shape of the blades. The result is an integral equation for the
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dipole distribution, which, depending upon the approximations introduced, may admit an

analytic solution, or may require numerical treatment.

The approximations required to arrive at an analytic solution are considerable; es-

sentially they ignore the annular or circular geometry of the fan, or stator, the three-

dimensionality of the disturbance, the interaction between the blades, and the compress-

ibility of the fluid. What remains is incompressible flow around an isolated airfoil in two

dimensions, the solution of which, for a sinusoidal vortical gust, is known as the Sears func-

tion. This was the approach used by Kemp and Sears 5'6 in their original investigations

of the interactions between blade rows in axial flow turbomachinery. The incompressible

approximation has since been shown to be unacceptable. For example, Fleeter 7 found that

compressibility can change the pressure values on the rotor or stator by as much as a factor

of two, while Kaji s calculated even greater changes (20 dB; a factor of 10) in the sound

pressure level upstream of the blade row due to source non-compactness.

At the opposite extreme, as regards complexity, are calculations carried out by Koba-

yashi 9 and Kobayashi and Croeneweg 1°, using equations derived by Namba 11'12 for an

annular blade row in compressible flow. Because of the annular geometry, the kernel

function, which relates the dipole distribution to the velocity normal to the blades, is elab-

orate in form and time-consuming to compute. The associated integral equation is two-

dimensional (i.e., both the spanwise and chordwise distributions of pressure dipoles must

be determined). In his numerical work, Kobayashi made comparisons between "exact"

aerodynamic theory and various approximate methods of calculating the normal compo-

nent of the induced velocity. One of these, which he called the "quasi-three-dimensional"

approximation, coincides with what most would call a "strip theory" approximation. In

calculating the induced velocity, derivatives with respect to radius are deleted from the

convected wave equation, so that one is left with the kernel function of a linear cascade in

unsteady compressible flow. The particular geometry of the cascade, as well as the vor-

tical inflow velocity, depend on the radius, and this parametric dependence is retained in

calculating the induced velocity and, hence, ultimately the dipole distribution. The effects

of radial or spanwise variations in the amplitude and phase of the vortical disturbance

velocity, as well as radial variations in blade chord, inter-blade gap, and stagger angle,

are thereby taken into account, even if in an approximate manner. Kobayashi found that
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this procedure introduced errors no greater than 2 dB in the computed magnitudes of the

acoustic modes set up in the duct upstream and downstream of the rotor. Furthermore

the strip theory approximation, as described above, is considerably easier than the "exact"

method to implement numerically. For these reasons, this approximation was selected for

use in the 11072 program.

Laksminarayana et al.13-15 have collected an extensive set of measurements of the

mean and fluctuating components of the flow downstream of a multi-bladed fan operating

at subsonic tip speed, using a transducer rotating at the same rate as the fan. Their

measurements of the mean, or time-averaged, component of the flow at locations remote

from the blade hub or tip indicate that the radial velocity immediately downstream of

the fan blade trailing edges is substantial, but that this velocity decays rapidly, so that

at distances greater than about one-half blade chord downstream the circumferential and

axial components of the mean velocity predominate. Measurements of the velocity defect

profile for each fan blade show marked asymmetry about the streamlines on which the

minimum velocity occurs, but this asymmetry also disappears within a half-chord length

downstream of the fan blade trailing edges. At greater distances, the normalized velocity

defect profiles all show a Gaussian distribution.* Due to the diffusion of momentum in the

flow, the widths of the velocity defect profiles increase with downstream distance, while the

maximum velocity defect decreases. But for the purpose of calculating the noise radiated

by the stator, it is sufficient to model the wake flow in the vicinity of the stator. This can

be done by ignoring momentum diffusion between the fan and stator, provided that the

wake thickness and velocity defect are assigned the values they attain in the vicinity of the

stator, say at the leading edges of the stator vanes.

With these approximations, the mean flow streamlines downstream of the fan become

a series of parallel lines, as viewed on a cylindrical surface opened out to form a plane.

On this plane the velocity defect profile of each rotor blade is assumed to be a Gaussian

wake profile, with wake width and maximum velocity defect left as parameters to be

* Since the original version of the code was released, hyperbolic 16 and loaded rotor 17

wake profiles, which are more representative of modern fans, have also been added. The

loaded rotor model, in particular, indicates that asymmetric profiles may have a non-

negligible influence on the predicted noise levels.

-4-



specified. When viewed in a stationary frame of reference fixed to the stator, the pattern,

which is spatially periodic, becomes a temporally periodic fluctuation which can most

conveniently be expressed in terms of a Fourier series for the purpose of calculating the

inflow disturbances normal to the stator vanes. Further details of the implementation of

the wake model in the code will be given in Chapter 3.

One additional aspect of the mean wake geometry is noteworthy. At each radius the

mean flow streamlines all bear the same angle to the centerline of the duct, but this angle

is a function of the radius, the precise nature of which depends upon the radial variation

of the rotor loading. The locus of centerlines of any given wake form a surface whose shape

depends upon the radial variation of the wake angle; this surface will normally intersect

any selected stator vane at only one point, and this point will move along the leading edge

of the stator vane as the fan rotates. If the gap between the fan and stator is large, each

stator vane will at any given instant intersect many rotor blade wakes, and, for each wake

intersected, there will be two changes in the sign of the disturbance velocity seen by the

stator vane. The pressure induced on the stator vane will have as many sign reversals as

the inflow velocity, and will tend to excite duct acoustic modes with that same number of

radial nodes. If, at the frequency of interest (which, of course, must be the blade passage

frequency or one of its harmonics), few or none of the duct modes with that number of

radial nodes propagate in the duct, the stator will not, at that frequency, be an effective

generator of sound. The significance of this wake roll-up phenomenon in the generation

of sound by the stator was pointed out previously by Bliss, et al. is In their discussion,

they chose to emphasize the radial trace velocity of the vane/wake intercept instead of

the number of nodes in the normal component of the inflow velocity. Their criterion for

efficient sound generation, namely that the trace velocity of the points of intersection of

the wake centerlines with the stator vanes be supersonic, is perhaps more appropriate to

an unshrouded rotor/stator combination, but the two criteria are roughly equivalent when

the ratio of hub and tip radii is close to one, and are exactly equivalent for a set of two

linear cascades in relative motion between two infinite parallel planes.

In the equations derived in this report, and in the computer program developed from

them, the radial variation of the angle between the mean wake streamlines and the duct

centerline may be specified arbitrarily, so that the effects of wake roll-up are properly taken



into account.

One element of the program, which was absent in the original version, is a model for

rotor hub and tip vortex flowfields. The details of the model may be found in Ref. 16,

where measured rotor flow data were used to develop empirical relations for the vortex

flowfield. While the model may not be sufficiently robust to allow for realistic calculations

of the vortex noise contribution, it does enable one to perform a parametric assessment of

the potential impact of a tip, or hub, vortex on the rotor/stator interaction noise.

The remainder of the report is organized as follows. Pertinent aspects of the duct,

rotor and stator geometries are discussed in Chapter 2. Mathematical models of the fan

blade mean wake and its hub and tip vortex flows, which together represent the rotor

gust upwash, are presented in Chapter 3. The chapter then concludes with a discussion

of the computation of the stator vane pressure distribution generated in response to the

gust upwash. An overview of the acoustics of annular ducts is given in Chapter 4, along

with a derivation of the amplitudes of the duct modes excited by stator vane pressure

distributions. The expression for the acoustic power in the duct is also presented. Chapter

5 presents key formulae for duct mode amplitudes and acoustic power derived in earlier

chapters in non-dimensional forms corresponding to those used in the code. Details on

cascade response and numerical methods are given in Appendices A through E.

-6-



CHAPTER2

GEOMETRY OF DUCT, ROTOR AND STATOR

For our purposes, a turbofan is a rotor and stator combination mounted in an annular

duct of infinite length (i.e., reflection of acoustic waves from the ends of the duct are

ignored). A sketch of the rotor/stator combination is shown in Fig. 2.1. As shown in the

figure, a cylindrical polar coordinate system is established in the duct, with the polar axis

lying along the duct centerline. The axial coordinate xl, increases in the direction of the

air flow, and the rotor rotates in the sense of increasing _b with fan rotational speed ft.

Note that the meaning for xl, x2 and x3 in subsequent figures is sometimes different from

that in Fig. 2.1. The outer radius of the duct is rD and the inner radius is rH. The rotor

has B identical evenly spaced blades and the stator has V identical evenly spaced vanes.

This is the same coordinate setup as used in Ref. 19, page 190, from which we later obtain

our Green's function.

The rotor blades and stator vanes are modeled as twisted sheets of zero thickness and

camber, whose stagger and chord vary with the radius, r. The axial and azimuthal sweep,

if any, of the stator vanes are defined by extending a radial line from the axis of rotation

through the leading edge point of the vane at the hub (radius r = rH). As shown in Fig.

2.2, the location of the leading edge point at any other radius r is defined by the two

parameters XsD and YsD which give the displacements of this point from the radial line.

(XsD = axial displacement of the stator vane leading edge, YsD = azimuthal displacement

of the stator vane leading edge.) Similarly, the azimuthal sweep of the rotor blades is

defined by extending a radial line from the axis of rotation through the trailing edge point

of the blade at the hub. The location of the trailing edge point at any other radius r is

defined by the parameter YRD which gives the displacement of this point from the radial

line. (YRD = azimuthal displacement of the rotor trailing edge.*) In general, XsD, YsD and

YnD are functions of the radius, and by definition, XSD = YsD = YRD = 0 at the hub.

* No axial sweep parameter is used for the rotor. Instead a rotor/stator distance pa-

rameter, Xsenc , which represents the axial distance between the rotor trailing edge and

the stator leading edge, accounts for any axial sweep that might exist.
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The intersections of the rotor blades and stator vanes with a cylindrical surface of

radius r is shown in Fig. 2.3. This is for the point in time where the rotor trailing edge

and stator leading edge are aligned azimuthally at the hub. The stagger angle of the vanes

is c_s . The spacing between the blades is 2rr/B, and between the vanes, 27rr/V. The local

semi-chord of the vanes is b which can be a function of r.
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CHAPTER 3

MEAN ROTOR WAKE

In this chapter, we provide information that will be needed for computing the acoustic

response discussed later in Chapter 4. Our basic geometry will be a constant-area annular

duct, through which a uniform flow is assumed. We shall describe a rotor wake model

from which we derive an expression for the wake velocity normal to the stator vanes; from

this expression we obtain the unsteady loading along the stator vanes. The loading will

then be used in Chapter 4 to derive an expression for the complex amplitudes of the duct

modes excited by the interaction of the rotor blade wakes with the stator vanes. These

amplitudes will in turn give us the power propagating up and down the duct.

3.1 Rotor Wake Model

The pressure distribution on the stator vanes can be calculated by dividing the stator

into a series of radial "strips" at constant radius and calculating the pressure on each

"strip" as though it were a linear cascade of thin flat plates. In this approximation, the

radial variation of the inflow to the vanes is ignored - - an application of "strip theory"

to stator aerodynamics. We are concerned here only with the mean value (time average

in rotor coordinates) of the rotor wakes, which, being time periodic in stator coordinates,

generate sound at harmonics of the blade passage frequency f_B/2_r.

Consider a cylinder of radius r, centered on the duct's axis of symmetry. The inter-

section of this cylinder with the rotor and stator is depicted in Fig. 3.1. This surface is

the one viewed by looking down the positive x3-axis in Fig. 2.1 toward the origin. In

Fig. 3.1, two sets of coordinate axes are shown; axes (X1, X2) are fixed at the trailing edge

of the rotor, while axes (xl, x2) are fixed at the leading edge of the stator. The azimuthal

coordinate, (r_b), is in the opposite direction to the x2-axis as indicated in the figure. Rotor

rotational speed, rf_, is in this same direction. The (xl, x2)-coordinate system is defined at

each radius and places the leading-edge points of the stator vanes at the points (0, -uh),

where v is any integer and h = 2nr/V. As seen in the figure, u increases in the direction

of increasing x2 (decreasing ¢).
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The relation between the two sets of axes in Fig. 3.1 is

= + z3+  rte2, (3.1)

where _2 is the unit vector in the azimuthal direction and/) ----/)(r-') is the vector distance

from the trailing edge of a rotor blade to the leading edge of a stator vane. /) is shown

for the case where, at t -- 0, the trailing edge of the rotor is aligned azimuthally with the

leading edge of the stator at the hub (i.e., r --- rx). We will perform our initial analysis

based on this configuration. However, /) actually is defined only to within an additive

vector r¢_2, where _b0 represents an arbitrary angle of rotation of the rotor. We shall

later indicate the effect of such a _b0 and assign it a particular value.

In Fig. 3.1, l_, which we will call the wake velocity downstream of the rotor, represents

the entire air flow, including the mean flow, downstream of the rotor and in the rotor

reference frame. The parameter c_cL is the angle that the wake velocity l_ makes with

the Xl-direction at the stator leading edge.

So as to arrive at a reasonably simple model of the rotor wake, which will be valid in

the vicinity of the stator vanes, it is convenient to introduce two plausible assumptions.

They are

1. no radial flow occurs, and

2. pressure gradients and turbulent and viscous diffusion can be neglected

over the chord of the stator.

A result of the second assumption is that the wakes do not change during convection

across the stator. The fluid velocity then has only two components, (W1, W2) in (Xl,X2)

coordinates, and the equations of motion of the fluid reduce to

(3.2)

V. (poI'V) ----O, (3.3)
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where P0 is the nominal fluid density. A parallel flow of the form

#" = w(£. N) (3.4)

where /_r and zb are constant orthogonal unit vectors (see Fig. 3.1), is a solution to

these equations, and is the form we will assume for the wake. The velocity is everywhere

parallel to the unit vector lb = (cos acL , sin aCL), and is constant in magnitude on the

lines __. ]_r = constant. The variation of the magnitude across the wakes is determined by

the as-yet-unspecified function W(._-/_r).

In this report, our Fourier series are defined in terms of the pair

OO

8 OO

xp/2

1 f f(x) e-2_isx/xp dx, (3.6)

-x_/2

where Xp is the period. Let H be the gap between rotor blades, measured azimuthally.

Now, W()_.N) is periodic in the/V direction, because all the wakes are assumed to be iden-

tical. The period here is the normal distance between wake centerlines, Xp = H cos acL.

W(__-N) can therefore be written as a Fourier series, i.e.,

OO

w(2. N) = w, (3.7)
$ O0

where we have substituted 27rr/B for H. The unit vector N has components (-sin acL ,

cos c_c_. ), so the Fourier series may also be cast in the following form,

8 O0

which indicates that the rotor wake velocity is periodic in the azimuthal direction also (as

well as the direction normal to the wakes). The azimuthal period is, of course, 27rr/B.

In principle, the Fourier coefficients W8 of the wake flow could be determined ex-

perimentally by processing a sufficient number of flow measurements collected from a

transducer mounted behind the rotor. If only the first few harmonics of the blade passage

- 15 -



frequency are of interest (it will transpire that the sth harmonic in the wake flow interacts

with the stator to generate sound in the sth harmonic of the blade passage frequency),

this is a feasible proposition. However, by assuming an explicit (and plausible) form for

the wake velocity profile, it is possible instead to characterize the wake velocity profile

semi-empirically by using experimental data to estimate the unknown parameters which

appear in these forms. In practice, this data is taken at the stator leading edge; however,

it must be referenced back to the rotor trailing edge to be appropriate for Eq. (3.7). In

defining the Ws's using Eq. (3.6), note that X is zero at the wake centerline for vo72.*

There are presently three wake velocity profiles to choose from in vo72: (i) Hyperbolic

Secant, (ii) Gaussian, and (iii) Loaded Rotor 67. Three types of wake width and velocity

correlations are available for use with these profiles: (i) Loaded Fan Wake Function and

two types of (ii) Linear Rational Functions. These options will not be discussed here. For

information regarding the wake profile and correlation treatment, the reader is referred

to Refs. 16 and 17. In addition to wakes, the current version of v072 now also contains

models for hub and tip vortex flows. These empirical vortex models, which were not

part of the original code, were added later to provide a more complete representation of

the flow field downstream of the fan. In their current form, however, the vortex models

are intended, primarily, as a tool for providing crude estimates of the contribution of

vortex flow to the rotor/stator interaction noise. As such, they should only be used in

parametric assessments of hub and/or tip vortex noise contributions, not as design tools.

When selected, these vortex models are combined with the wake profiles so that both are

used in determining the Ws's multiplied by an additional factor sin(a s + C_cL). This is

the quantity that appears later in Eq. (3.18). These vortex models are discussed in

Ref. 16.

3.2 Stator Upwash Velocity

We next determine the component of wake upwash velocity perpendicular to the sta-

tor vanes, using the combined wake/vortex profile in rotor-fixed coordinates at the rotor

* This is not the case for Ref. 16, where, with the notation here, X would be Xp/2 at

the wake centerline. This means that the Ws's used in vo72 differ from those defined in

Ref. 16 by a factor of exp(isTr).

- 16-



trailing edge,as given by Eq. (3.8). This upwashis specifiedin terms of its Fourier series

harmonics by using a coordinate transformation to stator-fixed coordinates.

We first calculate the wake velocity relative to the stator vanes,

Ur = 1_ - Or e2

and then find the component w of this velocity that is normal to the vanes,

(3.9)

w=Crr.h,

where ¢_ is the unit surface normal. Evaluating Eq. (3.10) using Eqs.

coordinate transformation (3.1), we find that

(3.10)

(3.8), (3.9) and the

W _ --

OO

=_ (3.Ii)3 O0

x e-i[ _B(:_:-:' t,,.,,o_)/,- + ,B_t]

where the Ws's are the same as before, except that for s = 0, the f_r part of Eq. (3.9)

would be needed in evaluating W0.*

On any specific vane, say vane v, the components of _" = (xl,x2), can be found from

= z_ + vh + bE, (3.12)

where 6 = (cos as,- sint_s) is a unit vector directed along the vane chords, and h = (0, h)

is the vector separation between any two neighboring vanes. The coordinate z is equal to

-b at the vane leading edges and to +b at the trailing edges. In terms of components,

Eq. (3.12) can be written as

xl = (z + b) cos as , (3.13)

x2 = -(z + b) sin a s + 27rvr/V. (3.14)

* Note, however, that the s = 0 case is not relevant to the work here since it represents

the steady part of the vane loading.
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Also, substitute for D: and D2 the relations

D1 = XSPAC,

D2 = YRD -F YSD,

which are easily obtained using Fig. 3.1. Then, Eq. (3.11) gives the result

OO

where

(3.15)

(3.16)

(3.17)

and

W$ = --W$ 8in(_ Jr- OICL ) e -i[sBc_IRDJr_SD-xSPAc tanO_CL)jr]

X e i [sBb (sin as+ cos r_ tan ,-,eL)It]

(3.18)

k, = s_BB (sino_ S -)- costa tancxcL ). (3.19)
T

In these equations, the parameters Ws, a s ) aCL, YRD, YSD, Xspac, and b are all functions

of the radius r.

Note that, had /) in Eq. (3.1) included the additive vector r_b0_2, we would now

multiply the right-hand side of Eq. (3.18) by a factor of exp(-isB¢o). This vector,

<_o= --XspAc,H tanacn.,/r, is used in V072. Therefore, Eq. (3.18) becomes

_J8 = -Ws sin(c_s + _CL) e-i [sB (YRD "_" _SD-- ZSPAC tan OtCL "[- ZSPAC,I t

X e i [,Bb(sin ots + cos c_s tan OLCL )It]

tan _CL,H)/r]

(3.20)

where the subscript H in Eq. (3.20) refers to the stator leading edge location at the hub.

Thus the phase in the circumferential direction is defined such that the exponential part

of Eq. (3.20) is unity at the stator leading edge location at the hub.

3.3 Loading on Stator Vanes

Because the vanes are impermeable, they must induce an additional velocity to cancel

the normal inflow velocity at the vanes themselves. Thus vane pressure loading is generated
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by the negativeof w and is found numerically by solving an integral equation. This integral

equation is obtained by modifying Eq. (A.21), which is derived in Appendix A. Eq. (A.21)

can be written as

+b

Apo(y ) dy_r(xl + vbhl, x2 + ubh2) = e iv_ Ke(xl - y, x2)
(3.21)

poU 2 b
--b

where w is the upwash evaluated at the point (xl + vbhl,x2 -I-ubh2). The variables xl,

x2, hl and h2 are defined in Fig. A.1, and u, P0 and b were defined previously. Parameter

a is the inter-blade phase angle, -27rsB/V, and Kc is the cascade kernel function, both

of which are described in Appendix A. Note that the negative sign for vr is a result of our

convention for counting blades. Variable Ur is the nominal fluid velocity in the rotor-fixed

coordinate system (see Fig. A.I), and Ap0 is the pressure loading on vane u = 0, which

has arbitrarily been selected to be the reference vane; Apv would be the loading on an

arbitrary vane. From the discussion in Appendix A, it is easily seen that

Ap_ = Apoe i"_ = Apoe-2i_rvsB/v

gives the pressure loading on the vth vane.

If we restrict ourselves to vane v = 0 by taking Xl = z and x2 = 0 in Eq.

where z is the local chordwise coordinate used before, we find that

(3.22)

(3.21),

+b

Ap0(y) dy
-w(z,O) = / gc(z-y,O) (3.23)

poUr b "
_r

--b

If w above is taken only to represent a single harmonic, then we use ws exp(iksz) (for vane

v = 0) from Eq. (3.17) in its place, and Eq. (3.23) becomes

+b

Ap0,s(y ) dy (3.24)wse iksz = K_(z -- y) - poUr b
-b

In Eq. (3.24), we have suppressed the 0 in the argument of K_ and replaced Apo with

Apo,s, where Apo,s is the sth Fourier series harmonic for Apo. Finally, we can write
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Eq. (3.24)

+b

e ikSz= Kc(z-y) fs(r,y) -_-,

-b

(3.25)

if we take

Ap0'" (3.26)
/,(r,z) = p0v. _8"

In v072, we solve Eq. (3.25) for fs(r,z), the elemental stator vane loading function, to

find the vane unsteady pressure loading. Given fs(r, z), the sth harmonic of the pressure

on vane v, Ap_,s, is given by

Ap_,,s = poUrwsf s (r, z)e -2i_'B /y. (3.27)

Relation (3.27), which will be used in the next chapter, follows easily from Eqs. (3.22) and

(3.26).

The parameters needed to evaluate Kc, when solving Eq. (3.25), are listed below:

fir: v/l - M 2,

Reduced frequency: g =-sS_b/(l_co),

Inter-vane gap: h = 21rr/V,

Vane stagger angle: as,

r: 2_'B[1 + M_.M_(,-/_)si_,_/Z_]V

These values appear in the discussion in Appendix A. In the above expressions, Mr is the

Mach number for the flow relative to the vanes, and M T is the rotational Mach number at

the rotor blade tip.
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CHAPTER 4

DUCT ACOUSTICS

To calculate the duct mode amplitudes excited by the interaction of the stator vanes

with the mean rotor wake, we first have to introduce the notion of normal modes. We will

then use the loading on the stator vanes from the wakes, in combination with a Green's

function integral, to obtain the modal amplitudes. From these modal amplitudes we derive

expressions for sound power in the duct.

4.1 Normal Modes in an Annular Duct

The normal modes of an annular duct with hard walls are the set of solutions to the

two-dimensional Helmholtz equation having the special form

= f(r) e (4.1)

where m is any integer, positive, negative, or zero. The Helmholtz equation is given by

V2q + _2_ = 0,

where x72 is the two-dimensional Laplace operator, in polar coordinates,

(4.2)

V2_ 02 1 0 1 02
- cot----_ + - + --_. (4.3)- r Orr r 2 0¢ 2

In this equation, _ is an undefined constant. As is shown below, the equation has non-

trivial solutions which fit the appropriate boundary conditions on the walls of the annular

duct only for certain specific values of a. If Eq. (4.1) is substituted into Eq. (4.2), we

obtain

d2 f 1 df m 2
dr 2 + _ + (g2 _ __)f = 0. (4.4)-- r _rr ?-2

Substituting u = n r for r reduces Eq. (4.4) to Bessel's equation of order m:

d2 f 1 df (1- m2du---_+u-_uu+ -_T)f = 0. (4.5)
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The solutions are ruth order Bessel functions of the first and second kind, i.e., f(u) =

_bm (n r), where

Cm(_r) = AJm(nr) + BYr,(_r). (4.6)

If we specify that _(r,¢) = Cm(_ r) exp (im¢) is either the pressure or the velocity

potential, then the radial derivatives of ¢m must vanish at the inner and outer walls of the

duct, so if A and B are to be not both zero,

T.)
=0. (4.7)

J-( To)

This transcendental equation has a countably infinite number of roots a for every integer

m; if we denote these roots by _rnn, n = 1, 2, 3," "-, and arrange them in order of increasing

magnitude, then the functions Cm(n._. r) have (n -- 1) zeros in the interval rn < r < rD .

These functions are also orthogonal with respect to the weight function r over the

same interval; that is,

rD

f r Cm(t_mn r) Crn(_mer) dr = 0 (4.8)

rH

unless £ = n. Using this fact, plus the fact that the functions exp (irn&), m = any integer,

are orthogonal on the interval 0 < ¢ < 27r, it is easy to show that the normal modes

_Pm(_mn r) exp (ira0) are orthogonal over the cross-section of the duct. Specifically,

ro 21r

ru o

x {¢k(t_ktr) e-ikV}rdgpdr

0,

= rD

r"f CL( m  )raT,

ifkT_m or eCn;

ifk=m and £=n.
(4.9)

It is convenient to adjust the constants A and B in Eq. (4.6) (which are determined by

Eq. (4.7) only to within an arbitrary multiplicative factor) so that
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r_

- ¢ (4.10)

The orthogonality relation, i.e., Eq. (4.9), then becomes

rD 2_r

,2 J

rH 0

where (_,nk and _,_e are Kronecker deltas; (_mk is equal to unity for rn = k and equal to zero

for ra _ k.

A special FORTRAN program has been written which calculates tcm,_ and the constants

A and B in Eq. (4.6) subject to the normalization given in Eq. (4.11); for details see

Appendix B.

The significance of the normal modes is that they can be used to represent pressure

patterns which propagate within the duct without change in form, and that any acoustic

field within the duct, however generated, can be represented as a suitable combination of

these patterns.

The wave equation in a duct containing a fluid moving at a uniform axial velocity U

is*

V2p + c9x2 (-_ + U p = 0, (4.12)

where p is the acoustic pressure, and V 2 is the two-dimensional Laplace operator, defined

by expression (4.3).

Now assume that p has the form

_m(am,_ r) e _(m_-_::'-_B_t), (4.13)

where we have assumed for frequencies the blade-passing values, sB_, introduced in the

last chapter. The pressure pattern above has m diametral nodes (like the spokes of a

* Between the rotor and stator an appreciable circumferential velocity exists as well.

This velocity is not accounted for in Eq. (4.12).
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wheel), and (n - 1) concentric circular nodes. If we substitute expression (4.13) into Eq.

(4.12), and recall from Eq. (4.2) that

v2[¢m(_.nr) e'**] _ e'**• = -_m. ¢_(_.. r) ,

the following relation is obtained:

(4.14)

-n.n - + -- + = 0.
co

Solving for 7 in terms of _, and sB_t, we set "y = 7,n,_s and find that

(4.15)

1 (MsB_ kmn,)7.n,=_-_ ± , (4.16)

where the plus sign is used for upstream propagating waves and the minus sign for down-

stream ones. Also,

k,_,, V\--_---z - f_2a_,. (4.17)

In the above expressions, M is the axial flow Mach number, U/CO, and _ ----x/1 - M 2.

Eq. (4.16) shows that 7,-, is real whenever sBa is real and IsBa/co] >/_,n. Under

these conditions, the pressure pattern propagates unchanged along spiral paths normal to

the lines

m_b- V--n, xl = constant, (4.18)

producing a rotating pattern. If sB_t is real but ]sB_/col < _nmn, then 7runs is complex

and the pattern grows or decays exponentially along the duct depending on which sign in

Eq. (4.16) is selected.

Modal pressure patterns such as

¢.(_.__)e_(-_-_-_,_,-_"_) (4.19)

can be superimposed to form a general description of the acoustic pressure field in a

turbomachine. Thus, if we multiply the pattern above by an arbitrary coefficient, say

p,n,, and sum over m, n and s, we obtain
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OO OO CO

= Z Pm,,s (4.20)

where now _ is the point (r, xl, ¢) in the duct. Note that in general p(_, t) is composed

of both propagating and non-propagating modal pressure patterns. The Fourier inverse of

this equation gives the sound pressure at the sth harmonic of blade passage frequency:

C_ OO

ps(X) = E E Pmns Cm(gmn r) e i(m¢-'lmnsx`) (4.21)

It should be noted that, following standard practice, when output is printed in the v072

code, the radial mode index is adjusted to begin at 0 instead of 1.

4.2 Duct Acoustic Modes

The acoustic modes of the inlet or exhaust ducts were just derived above. In this

section, we shall derive equations that relate these modes to fluctuating loads on the

stator vanes. The end result will be an expression for the complex pressure amplitudes

appearing in Eq. (4.21). If we assume a harmonic time dependence for the excitation, say

fs (_) exp(-isBf_t), which is the case for the wake, then pressure at the field point _ will

also be harmonic with the same frequency, and will have the form Ps(_) exp(-isBf_t).

This is due to the linearity of the governing equations.

It can easily be shown* that the pressure fluctuation ps(:_) within the duct is given,

in terms of the force/unit area f_(£) exerted by the vanes on the fluid, by the Green's

function integral

p,(e) = f L (y')ds( , (4.22)
s(_

where S(_ represents both surfaces of the vanes and V_7 is the gradient operator with

respect to the vector ft. In this equation, G(Z, y-') is the space-only dependent Green's

* One way to see this is to start with Eq. (4.13), the time dependent Green's function

integral for density fluctuation p(Z, t), in Ref. 19. Multiply through by c2 to switch to

pressure fluctuation p(_, t). Then proceed much as is done in section 4.3.2 ("Application

to Pure Tones") of Ref. 19 in obtaining Eq. (4.25) there.
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function for a hard-walled annular duct. It is the same function as G,o(_ I x) given by

Eq. (1.C.12) in Ref.19. If we introduce a cylindrical coordinate system such that the field

point :_ is (r, xl, _), while the integration point _7 is (r', Yl, ¢'), then G can be written as

follows

1 Cm( m.r) (4.23)k ..r
m_--oo n_-].

where F ---- lr(r 2 -- rH2).

The coordinate system used is pictured in Fig. 4.1. This figure is obtained by con-

sidering an imaginary cylinder, of radius r, centered at the duct axis of symmetry. The

intersection of this surface with the stator is what is depicted. The origin is located where

the leading edge of the stator intersects the hub. In contrast to the situation in Fig. 3.1,

the origin is always here rather than moving with the leading edge as the radius changes.

In expression (4.16), which defines _'mns, the plus sign is used for upstream field points

(xl < Yl) and the minus sign is used for downstream field points.

If the fluid is assumed to be inviscid, the force _ will be normal to the surface,

-- p, fi,

where ff is the outward surface normal and Ps is the local pressure. Thus

(4.24)

f _,(y')-{V_' G(_,y-')} ps(Y--') dS(_. (4.25)Ps(_)
,J

s(_

The integration is to be carried out over both faces of each vane. On each vane, we can

divide the integral in the equation above into two parts, one over the forward or upstream

face of the vane, and the other over the downstream face. Denoting the upstream face by

superscript (+) and the downstream face by superscript (-), we have, because the vanes

are very thin,

p,_,= (p_- -p+) ,h, (4.26)

where fi is the unit normal vector erected on the mean surface of the vane as shown in

Fig. 4.1. Define Ap_ as Ap_ = p_- - +Ps, which is positive when the pressure is greater on

the lower face of the vane. Then
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I Fig. 4.1 Stator Geometry for Acoustic Mode Analysis.
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ps(x) = - f h(y-). {V_" G(x,y)} Aps(_ dS(y-), (4.27)
,i

S M

where now the integration is over the vane mid-surfaces S M (as opposed to the two vane

faces).

Using expression (4.23), Eq. (4.27) can be written as

1
×

2iF km,_

Note that Cm(Rmnr)

(4.28)
f eS(y' 

S M

exp[i(rn¢- V._n,xl)] is a rotating pressure pattern of the type

discussed previously.* Eq. (4.28) is thus a normal mode expansion of the sth harmonic of

the acoustic pressure within the duct. Comparing Eqs. (4.21) and (4.28), we see that

1 /¢m(_mnr')_(y-).V_[e_(-m¢'+'Y""s_)]Aps(y_dS(y_, (4.29)Pm_s = 2iFkm_

S M

where the Pmns are the complex modal amplitudes introduced in Eq. (4.20). Eq. (4.29) is

the starting point for evaluating these coefficients.

In Eq. (4.29), the integration is to be carried out over all V stator vanes. As before, to

reduce the region of integration to one vane, we arbitrarily select one vane as a reference

vane. We assign this vane the number 0, and the remaining vanes, in the direction of

decreasing ¢', the numbers 0 through (V - 1). Using the notation in Chapter 3, let the

pressure on the vth vane be Apv,s(ffo), where if0 is the point (r', y1,¢') on the v = 0 vane.

Then the corresponding point on vane L, is (r', y_, ¢' -2nv/V). The total contribution of

all V vanes is thus

1

Pmns - 2iFkmns / Cm(_mnr') _(ffO)" V_'[ e_(-m¢'+'y'_s_l)]

So

V--1

×{E

* Except for the factor exp(-isB_t).

(4.30)
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where we have gone from a notation where S M represented the middle surfaces of all the

vanes to one where So represents the middle surface of the reference vane.

Referring to the geometry in Fig. 4.1 and noting that the normal vector on the

reference vane is ?t = (sin as, cos a s), we have that

• I ] m/z.Vg e '(-m¢+_'_"'_1) =i(Tcosas +'/mnssina,) e i(-mee'+'r'''*y') (4.31)

Note that because ¢ and Y2 are in opposite directions, there is no minus (-) sign preceding

the m/r' term. To facilitate the integration over the vane surface use the intrinsic chordwise

coordinate z', which as before varies from -b at the leading edge to +b at the trailing edge.

From Fig. 4.1 we see that

Yl = --XsD q-bcosa s q-z tcOsa s,

4= (-ys + bsina + z'sina.)/r'.

(4.32)

(4.33)

Using r' and z' as integration variables, and applying Eqs. (4.31)- (4.33), Eq. (4.30)

becomes

2Fkrnnsl J Crn(t_mn rl) ( mPmns -- 7 cosa_

rH
b

X ei(--9'mnSXSD+rnYSD/r') /{

--b

× ei [(-r=.8 cos a s - ,- -<n%/_') (_'+b)] dz' dr'.

"b "_rnn_ sin a s J

V-1

v-----0

(4.34)

The sth harmonic of the pressure loading on vane v is given by Eq. (3.27). If we substitute

this into Eq. (4.34), we have
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Pmns

rD

/ ( )Po _b_(_m_r') /Jrws _-cosc_ s +'7,n,_ssincLs2rkm_s
r,

V--1

X ei(--'lm"sxsD+rnYSD It') { E e21riv(rn--sB)/V}

v=O

b

× f h(r',z') ez' at'.
--b

The sum over vane number in Eq. (4.35) can be evaluated explicitly:

v-1 (V, ifm-sB=-qV;

E e2vriv(rn_sB)/V __

,,=o O, otherwise.

Here q is any integer. The final result is

(4.35)

(4.36)

where now the primes have been dropped from z and r, and the index m is given by

m = sB - qy. (4.37)

Eq. (4.36) is our final result. As is evident from Eq. (4.36) above, Pm, s is propor-

tional to ws, the sth-order Fourier coefficient of the mean rotor wake. The computer code

computes these coefficients, as mentioned previously, using semi-empirical information.

However, the code can easily be modified to accept the Fourier coefficients of the wake

velocity as inputs, and compute the duct modes directly from them. Additionally, new

semi-empirical wake modules could be added to vo72 to supplement those already there.

As a final remark, let us note that once the pressure amplitudes, Pm,_, are specified

by virtue of Eq. (4.36), the pressure at any point within the duct can also be determined,

if desired, from the summation
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CO OO OO

E E E
q=--oo n=l s oo

where m = sB - qV.

PmnsCmns(nmns r) ei(m¢_-7"_'_s_:l-ssm), (4.3s)

4.3 Sound Power

The flux of sound power in the duct, is found by substituting Eq.

(C.20) of Appendix C, which is written as

(4.36) into Eq.

- _ Gm_s (4.39)
Power = poU

q------C_ n-----i S------C_

Here Gm,_ is defined as

Gm,_s = =t=M2_4 (sBf_/U) kin,8 (4.40)
(sB_/co :i= Mkm,s)2 "

The upper set of signs apply upstream of the stator and the lower set apply down-

stream. The details describing how power is determined are presented in Appendix C.

In Eq. (4.39), the index m is given by Eel. (4.37). Finally, if the sound power at one spe-

cific harmonic of the blade passage frequency is desired, the summation over s is deleted,

and s is set equal to the desired harmonic number.

Note that for a propagating mode (m, n) at harmonic s, another mode (-m, n) of

complex conjugate amplitude propagates with frequency -s. Because the amplitudes are

complex conjugates, v072 only calculates positive harmonics. The total sound power for

the mode is then evaluated from just the one by applying a factor of 2.
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CHAPTER 5

NON-DIMENSIONAL RESULTS

The vo72 program uses non-dimensional input geometry and performance parameters.

It uses these quantities to compute dimensionless versions of pressure amplitudes and power

and then converts the results to dimensional values. The final output of the program is the

magnitude and phase of each propagating mode excited by the interaction of the stator

vanes with the wake of the rotor. The sound power flux per mode is also computed and,

by summing over all propagating modes, the total sound power flux is obtained. Note that

propagating modes are those discussed in Section 4.1 for which sB_/co >/%;m,_. Modes for

which sBf_/co < j3_,_, are said to be cut off and are not included in the output. Note also

that a multi-vaned stator, as seen by F,q. (4.37), excites only a subset of the propagating

modes at any given frequency; specifically, only modes whose number of diametral nodes,

m, is related to the number of rotor blades and stator vanes by the equation m = sB- qV,

where s and q are arbitrary integers. The program takes this selection mechanism into

account in choosing which mode amplitudes to compute.

In performing its calculations, voz2 is divided into two parts. It first carries out the

rotor wake calculations and then computes the acoustic results. To do this, it needs both

geometric and performance input. Note that performance data would normally come from

a steady aerodynamic prediction code of axisymmetric or two-dimensional nature. (See

Ref. 3 for more discussion of this.)

1 2
Non-dimensionalization in voz2 is with respect to a reference pressure _poU , a ref-

1_ ^3_r4_2 lengths and br, and speeds c0, U and Ur. Here P0 is theerence power _/.,o_o_v, 'D, rD

nominal flow density, U the mean axial fluid velocity, co the speed of sound in the duct,

M = U/co, rD the duct outer radius, and bT the vane semi-chord at the tip.

5.1 Pressure Amplitude

The dimensionless expression for the complex pressure amplitudes is easily derived

starting from Eq. (4.36). After straightforward effort, it takes the form
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PmTLs

lpoU2 _r(1 - _--_2)_;_.. . w" @" (Xm,_x) (xCOSas +_,_,,,sina_) (5.1)

× dx.

In the above, ac = 2bT/rD; ar = rH/rD where rn is the hub radius; _,_,s = 7m,_s rD, where

")'m,_s, the axial wave number, is the same as in Eq. (4.16); and _:,n,s = km,_8 rD where

k,,,_s is the same as in Eq. (4.17). Note that _m,_s and km,_s can be written, explicitly, as

and

_ 1 (sBMMT) +k,,m, (5.2)

_,,,,_ = X/(sBM r)2 _ f12X2 , (5.3)

where M T is the rotor rotational Mach number at the blade tip and _ = _/1 - M 2. Further,

in Eq. (5.1), X,,n = _,,,_r D where _;,_ is the eigenvalue for mode (re, n); x = r/rD;

Xs = XsD/2bT; Ys = YsD/2bT; and b = b/2b r.

Additionally, Cm,_s(x) is the same chordwise integral of the elemental blade loading

function fs* multiplied by an exponential function, as seen in Eq. (4.36), only here non-

dimensionalized using the chordwise parameter z/b. It is given by the expression

Because fs has a square root singularity at the leading edge (z/b = -1), it is necessary to

change the integration variable from z/b to @, where z/b = cos ¢. We then have

71"

= f, sin¢ a¢. (5.5)

This integral is easy to compute numerically using Simpson's rule, because the product

fs sin ¢ is finite at the leading edge (@ = 7r).

* Note that the elemental loading function f, becomes a different function as its inde-

pendent variable changes from step to step. However, for simplicity of notation, we still

denote it as f_.
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The parameter _s, used in Eq. (5.1), is defined as ws/Ur, where w8 is the quantity

given by Eq. (3.20) and Ur is given by Eq. (3.9). It can be written as

-isB [a¢(YR +Ys )/X--XsoR tan aCL +XsoR, HW8 = _U8 e

X e -isB [aeb (sin a s +cos r_8 tan _CL )/3:]

tan _CL, H ]

(5.6)

where

= 7]-)sin(- +-eL). (5.7)

Also, YR = YRD/2bT and Xso R = XSPAC/2b T.

The spanwise integration in Eq. (5.1) requires special treatment because z08, as seen

in Eq. (5.6), contains a phase angle, Xso R tan acL , which varies rapidly over the span

when the separation between rotor and stator is large or when the relative flow angle at

the stator leading edge, acL, is a strong function of the radius, r. To handle this rapidly

varying phase, an adaptation of Filon's rule of integration has been used for the spanwise

integration (see Appendix D). Note also that for spanwise integration, vo72 requires values

of geometric and performance quantities at radial locations determined internally by the

program. To obtain these parameters at the necessary locations, vo72 linearly interpolates

the pertinent input data.

To obtain fs(y/b), which is needed in Eq. (5.4) to evaluate Cmns(x), one solves the

dimensionless version of Eq. (3.25) which is easily seen to take the form

e,i&'z/b: j_y 1 Kc(_--_-) fs(Y) d(b), (5.8)
Ib=--I

whose kernel function Kc((z- y)/b), as mentioned previously, is derived in Appendix A.

The quantity Its is the non-dimensional version of the vane chordwise wavenumber/% (see

expression (3.19)). It is given by

1% = k_b - sBacb (sinas + c°sas tanacL). (5.9)
2:

Finally, there are issues as regards a singularity at the leading edge. For this reason

Eq. (5.8) must be changed to the form
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_0 I1"
ei£S¢°s°= Kc(cos0- cos_b) Fs(¢) d_b, (5.10)

using the same chordwise type transformations as used previously, i.e., z/b = cos 0 and

y/b = cos¢. In Eq. (5.10) we then have Fs(¢) --- f_(cos¢) sine. The singularity issues

along with a solution of Eq. (5.10) using the method of collocation (Refs. 20 and 21) are

discussed in Appendix E.

Note that, in the code, magnitudes and phases of the pressure mode amplitudes are

printed out. The phases are given for positive values of the index s. The magnitudes are

r.m.s, values obtained by time-averaging the square of the sum of the +s and -s waves,

{pm_sexp(-isB_t) + p(_m)_(_s)exp(isBf_t)} 2. Since p(-,,gn(-_ ) = P*n_, the result

of this calculation is v/2 I Pmn, ]" Before output, the magnitudes are converted back to

dimensional form through multiplication by ½PoU 2. The final result is then presented in

dB units relative to a reference pressure of 0.0002 x 1.4504 x 10 -4 psi (i.e., 2 × 10 -5 Pa).

5.2 Sound Power

Given the modal amplitudes pm,_/(½PoU2), the sound power is obtained from Eq.

(4.39). Non-dimensionalizing by 1_ ^3,_4_2_vocolvl %, we have

Power _ o_ 27r(r 2 -r_)Gm=s pmn_ 12,
1^ -3_Uf4_2 _--- E E _/_r--_D2 ½PoU2

(5.11)
I

8POlo _'1 'D q=--_ n=l

where Gmns is the quantity given by Eq. (4.40), m = sB - qV, and sound power in Eq.

(5.11) is for one specific harmonic, s, of the blade passage frequency. In obtaining Eq.

(5.11), we have used the fact that 1 _ _3 _4_2 1 3 2_p0u01vl % is equivalent to _poU MrL. Eq. (5.11) can

finally be re-written as

Power

I 3 4 2
gpochM rD

oo oo Pmns [2
E E 2_r(1-a 2) (_,_,_. ½PoV 2, ,

(5.12)

where

Gmns = _= kmns sBMT_ 4 (5.13)

Again, as for expression (4.40), the upper set of signs apply to power for waves propagating

upstream and the lower set apply downstream.
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V072 gives values of sound power for three different cases: (1) for the sum of all modes

with a given s; (2) for the sum of all modes with a given s and m; and (3) for individual

modes with given s, m, and n. Case (1) is treated using Eq. (5.12); case (2) using Eq.

(5.12) with the summation over q deleted and q set to give the value of m desired; and

case (3) by taking the individual term in Eq. (5.12) corresponding to re, n, s. For all

three cases, as for the mode amplitudes, the actual power output comes from summing the

values for both +s and -s. Additionally, the power is converted back to dimensional form,

_p0_M rz_, and then given in dB units relative to a referencethrough multiplication by 1 4 2

power of 10-12/1.3558 ft-lbs/sec (10 -12 watts).
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CHAPTER 6

CONCLUDING REMARKS

This report is an updated version of the analytical documentation for the vo72 Rotor

Wake/Stator Interaction Code. It provides updated geometry and revised equations and

has eliminated the material related to turbulent acoustic sources, because these sources

are not active in the code. Additionally, equations are now developed in terms of integer

multiples of blade passage frequency, rather than the more general frequency w used when

turbulence was covered.

In this report, equations have been derived for the amplitudes and power of the prop-

agating duct modes excited by a turbofan (rotor/stator stage) operating at subsonic tip

speed within an infinite hard-walled annular duct. The equations used in the code are

non-dimensional and the output is tone noise generated by the mean velocity defect wakes

of the rotor blades impinging on the stator vanes. Output is provided at blade passage

frequencies for the propagating (cut on) modes.
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APPENDIX A

KERNEL FUNCTION FOR A LINEAR CASCADE

IN SUBSONIC FLOW

The kernel function for a cascade of thin airfoils in oscillating subsonic flow has been

derived by several investigators, using a variety of methods (Refs. 5-9, 22). Of the vari-

ous approaches employed to date, the method of Fourier transforms is perhaps the most

straightforward. This procedure was used in Ref. 9, for example, but the inversion of

the Fourier transform was accomplished numerically. More recently, Goldstein (Ref. 19)

pointed out that the Fourier transform of the kernel function contains no branch points,

so the inversion can be accomplished quite easily by using the Cauchy residue theorem.

Goldstein outlined the procedure to be followed, but did not actually carry out the calcu-

lation of the kernel function. The purpose of this appendix is to set forth the details of

the inversion, and to record the end result. For the convenience of the reader, as well as

to document the notation used, a brief derivation of the transform of the kernel function

is also presented.

The cascade geometry is shown in Fig. A.1. The airfoil semi-chord is b, and the gap

between the neighboring airfoils is bh, with components bhl, projected along the chord,

and bh2, normal to it. The airfoils are shown as having no camber, because the ultimate

objective is to calculate the pressure field scattered by the cascade when it is subjected

to vorticity convected with the mean flow. However, other situations, such as a cascade

of oscillating airfoils, can be handled as well. For the purpose of calculating the kernel

function, we need only suppose that a known chordwise pressure distribution exists on

each airfoil, and calculate the resulting velocity field.

The first step is to calculate the upwash generated by a single airfoil. Let the pressure

be given by the real part of p exp(-isB_t), and the corresponding velocity field be the

real part of (_/Jl, W2)exp(-isB_t). Then, p satisfies the convected wave equation, and

the velocity field is related to the gradient of p through the equations of motion.* These

equations are

* p and (wl, w2) now represent the sth harmonics of pressure and velocity field.
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02P 02P l (-isBl2+Ur O-_)2p=O, (A.1)

_) 10p =0; j = 1,2. (A.2)(-isBn + vr _J+ poov--_
Consistent with the definition of Fourier series in Chapter 3, the following definition of the

Fourier transform pair is chosen:

JrOO

1/P=_
--00

p e i'_ da, (A.3)

#= / p e-i_Yldyl. (A.4)

--OO

The Fourier transforms of Eq. (A.1) and the second of Eqs. (A.2), i.e., for j = 2 are

d2/_

dy_
_ _2p = o, (A.5)

where

i(-sBl2 + aU,-)ff_2 + ----
1@

po dy2
=0, (A.6)

1

A = [a 2 - M2(a - sBft/U,.)2] _ (A.7)

The pressure p generated by an isolated airfoil is bounded at infinity, and, because the

airfoils are assumed to have zero thickness, is antisymmetric in Y2. A solution of Eq. (A.5)

satisfying these conditions is

Ap(_) e__l_Isgn(y2), (A.8)
P= 2

provided that A is defined so that its real part is non-negative on the path of integration

used to invert the Fourier transform. In Eq. (A.8), Ai0(a ) is the Fourier transform of

the chordwise pressure distribution, Ap, on the airfoil. (Ap is positive if the pressure is

greatest on the lower face of the airfoil.) By eliminating p between Eqs. (A.6) and (A.8),
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we obtain the Fourier transform of the upwash generated by a single airfoil. The upwash

itself is

--_OO

w2 (YI,Y_) = 1 J A Ap(a) -_1_21 da. (A.9)vr 2i( - sBn/V ) poV e' Y'

The upwash generated by a cascade of airfoils, located at the points (Yt, Y2) = m(bhl, bh2),

rn ----O, +1, +2,..., is obtained by summing the contributions of the individual airfoils:

(u ,y2) = 1 f Apm(.)2r _ 2i(a- sBfl/U,.) poU 2 (A.10)
m=--oo

--00

× eiO_(yl--mbh,)--Aly2--mbh2t da.

This infinite series can be summed analytically if the transformed pressure distribu-

tions on successive airfoils in the cascade [i.e., Apm(a)] are related by a constant increment

in phase angle. That is, for any integer m,

m_m(O_) = Affo(o_)e ima, (A.11)

where Ap0(a) is the transform of the pressure on the "zeroth" (i.e., reference) airfoil, and

cr (called the inter-blade phase angle) is a constant given by*

2_sB (A.12)
V

To calculate the upwash near any selected vane, say vane v, introduce

xl = Yl - vbhl, (A.13)

x2 = Y2 - vbh2, (A.14)

and

* This value can be derived by proceeding as in Ref.

definitions of geometry and parameters.

(A.15)

23, page 38, only using our
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Then

W2

_rr(xl + vbhl,x2 + vbh2) --

where the infinite series

ei_ f Apo(a)poU_
doz_

(A.16)

can be summed as

n oo

(A.17)

for

1 [e(½ A+-x_)

sinh(½n_)I ,

(A.18)

0 < x2 < bh_, (A.19)

where

A± = =i=Abh2 + i(or - abhl ). (A.20)

Now, use the convolution theorem to calculate the inverse of Eq. (A.16)

+b

_--_(Xl + vbhl,x_ + vbh2) = e i_'° Kc(xl - ¢,x2) AP°(¢) depoU_ b '
--b

where Kc is the desired cascade kernel function given by

(A.21)

b J A Se iaz_Kc(xl,x:) - ffTr 2i(a- sBf_/U,.) da.
--00

The factor b is included to make Kc dimensionless.

It is convenient to introduce dimensionless variables, as follows:

(A.22)
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K = -sBf_b/ (t3_ co),

& = ab - MrK,

YcI = xl/b,
(A.23)

Yc2= x2/b.

where fl,- was defined at the end of Chapter 3. The shifted transform variable & completes

the squares in A:

Then

A = _X/& 2 - K 2. (A.24)

where now

-_OO

_reiKM_5:l J "[Sei&_:lKc -- 2?ri 2(& + K/M,.) d&, (A.25)
--OO

1

.y= (&2 _ K2)_, (A.26)

e(½ -

sinh(½a_)
(A.27)

Notice that "_S is an even function of "y, so that even though the integrand contains

the variable

7 = V/&2 - K2, (A.28)

there can be no branch points at & = +K. Thus, if we apply the residue theorem to

evaluate the kernel function by closing the path of integration on a large arc in the upper

or lower &-plane, no residual integrals around branch cuts appear; the kernel function is

simply the sum of the residues in the upper or lower half plane. To insure that the integrals

on the arcs vanish as their radii are allowed to become infinitely large, the integrand in

Eq. (A.25) must be modified. First, note that

1 02S
S = (A.29)
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so Kc can be written as follows

-_-oo

eiKMr_ 02 / Sei&_lKc -- 27ri_,- 0_ 2_(& + K/M,.) d_. (A.30)
_OO

The integral above can be evaluated via the residue theorem by using the contours

shown in Fig. A.2, and the differentiation with respect to _2 carried out afterwards. If

xl > 0, the integral around the semicircle in the upper half plane vanishes when the radius

of the contour goes to infinity. Thus,

1 eiKM,._: 1 02 f sum of residues in }Kc = -_,- _ _.upper halfplane " (A.31)

On the other hand, when xl < 0 the integral around the contour in the lower half plane

vanishes, so

Kc=.q_!eiKM_._l 02{ sum °fresidues in }j3,- 0_ lower half plane "
(A.32)

The integrand in Eq. (A.30) has poles at & = -K/M,-, and at points where

± wheresinh(½A±) = 0. The latter set of points are located at a n

A± = 2nTri (n= any integer) (A.33)

[cf. Eq. (A.27)]. When A± is real, some of these poles lie directly on the real axis. To

arrive at the correct expression for K¢, it is necessary to invoke the causality condition by

stipulating that K has a small negative imaginary part. Once the kernel function has been

evaluated, we can let Im(K) ---* 0. The effect of this procedure is to eliminate the possibility

that acoustic waves not generated by the cascade itself are inadvertently included in the

solution.

If Im(K) < 0, the pole at & = -K/M,- is clearly in the upper half plane. The residue
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is

where

RK _

M_

2 ,.K sinh(fl2Kh2/Mr)cosh(_2Kh2/Mr)- cos(F + Khl/Mr)
e -iK_l/Mr , (A.34)

F = a - abhl - _Khl (A.35)
Mr

Using Eq. (A.12) for a, Eq. (A.23c) to obtain a when & = -K/Mr, and Eq. (A.23a) for

K, we can rewrite Eq. (A.35) as

F= 27rsB [ l + MTMr(r/rD) sina_/fl2]V , (A.36)

which is the expression for F used in the code.

+ of Eq. (A.33) are given byThe roots a n

where

__ F,_hl j3rh2 1,
an-- d2 +-_ [g2-(rn/d)2] _ (A.37)

Fn = F - 2nTr,

d += firth2 .2 2

If the square root in Eq. (A.37) is defined as follows,

[Re i°] ½ = v�--Re i°/2, 0 < 0 < 2r, (A.40)

± having the plus (minus) signwhere v/R is the positive square root of R, then solutions a n

in Eq. (A.37) are located in the upper (lower) half plane. In either case, the residue is

R_(an_ ) _ _rh2 1 12d 2 (a_ - F_hl/d 2) (a_ + K/Mr) ei_'" (A.41)

Using Eqs. (A.31) and (A.32), and carrying out the indicated differentiations, we
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obtain the final result

KC _

if :_1 > 0, and

_K sinh(_Kh2/Mr) e_,Z_g_,/M,.

2M,- cosh(_Kh2/M,.) - cos(F + Khl/Mr).

_2r h 2 +oo

n _

(a+2- K2) K/Mr)]- +

(A.42)

KC _

2h +ooj3_ 2
2_ Z

n_--OO

(a= 2 - K2) e,(,_7, +KM.)_,
(_ - r._l/_) (_ + K/Mr)] (A.43)

if _1 < 0. Having calculated the kernel function for Im(K) < 0, we can now let Im(K) _ 0.

± become, using the branch of the square root employed previously inThen the roots a n

Eq. (A.37)

if lr./dl > K, and

._,-h2
r_hl + ____d_v/(r_/d)2 _ K2 (A.44)

_n -- d,2

r_h_ _h2 v/K2 _ (r_/d) 2 (A.45)
a_- d2 _=--d-

if Ir_/dl < g. In Eqs. (A.44) and (A.45), c_+ is to be calculated using the upper set of

signs, and c_ using the lower set of signs. The x/-'- sign means the positive square root.
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APPENDIX B

NUMERICAL COMPUTATION OF THE NORMAL MODES

IN AN ANNULAR DUCT

As discussed in Chapter 4, the normal modes in an annular duct axe functions of the

form

em(am_r) = AJm(am, r) + BYm(am,` r), (B.1)

where Jrn(') and Ym(') are Bessel functions of the first and second kinds, and a,,,`'s are

the roots of the following transcendental equation:

Y£(a,',)
=0.

J'(ar.) Y'm(aro)

The roots amn rD of Eq. (B.1) are found by first estimating the roots as follows:

(B.2)

m, if n = 1;
a_ rD -- (B.3)

am,,`_t rD + % ifn > 1.

This estimate is refined by incrementing the estimated value of am,, rD by zr/10 until the

determinant in Eq. (B.2) changes sign. The step size is then halved and changed in

sign. This process continues until the absolute value of the determinant is reduced to a

preassigned value. In the code, this is done utihzing the non-dimensional versions of the

above equations.

Once the eigenvalue _m,` has been computed, the constants A and B are assigned one

of the following two sets of values:

{ Y'(am,` r.)

A=I A=

J'm(am,`r_) or g'm (am,`rD) (B.4)

B=-y_(am.r_), B=I

Of these two sets of values, the one for which (A 2 + B 2) is the smaller value is chosen. If

(A 2 + B 2) is the same for both, then the second set is picked. The desired normahzation,

namely,
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rD

/ ¢_(_m,r) rdr = _(r2 - r2), (B.5)

rg

is obtained by computing the value of the integral on the left-hand side of the equation

above, using the formula

/¢_m(t_m,r)rdr= -_ r 2 ¢_(_m,_r) --C.
r=r H

rH

The constants A and B are then divided by

(B.6)

V/2C/(_ - _) (B.7)

to give the normalization required by Eq. (B.5).

Note that in terms of non-dimensional variables, Eqs. (B.5) and (B.6) can be written,

respectively, as

and

1

2 X 1(1- a_2)@m( re.x) xdx =
(B.8)

1 1

era(re.x) (B.9)era(re.z) zdz= _ z2 2 X .
o't.

The non-dimensional parameters in Eqs. (B.8) and (B.9) are the same as the ones originally

used in Chapter 5. It is easily seen that the factor by which A and B are to be divided,

can be written explicitly as

_/ 2 2 2

(i - mVxLJ¢_(x_.) - (_ - m /xm.)%.(x,,,. _) (B.10)
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APPENDIX C

SOUND POWER FLUX

The sound power flux through any cross-section of the duct is given by (Ref. 19)

f

Power = ] < I_= > dA,
J

A_

(c.1)

where Iaz is the axial component of the acoustic energy flux vector, < Iaz > is the acoustic

intensity, which is defined as

2--7 I dt,
-_IBn

(c.2)

and AD is the cross-sectional area of the duct. In a duct containing a fluid flowing at a

uniform axial velocity U, I_= is, in turn, given by

Io== + u )(p0 + pu),

where P0 is the nominal fluid density and p, p, and u are the instantaneous acoustic

perturbation pressure, density and axial velocity, respectively. The quantities p and u are

real. Although not explicitly stated, all acoustic variables are functions of both space and

time.

The acoustic pressure and density perturbations are proportional to one another (p =

c_p), so Eq. (C.3) can be rewritten in terms of the pressure and axial velocity as

M
Io= = (1 + M2)pu + --pp + pocoMuu, (C.4)

p0c0

where M = U/co is the nominal axial flow Mach number. For p and u real, we can write

pu = pu* and uu = uu*, where the superscript • denote the complex conjugate. Hence,

Eq. (C.4) can be rewritten as

M
I== = (1 + M2)pu * + --

p0c0
pp * + pocoMuu *. (c.5)
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For functions of t, we reverse the Fourier series sign convention used in Eqs. (3.5) and

(3.6) for the spatial variables. Then, p can be written as the Fourier series

OO

p(e,t) = y:. v,(e) e (c.6)

where

_r/B_

Bf2 / p(_,t) e isBf_t dt. (C.7)ps(_) = 2_
-lr / B_

There is a corresponding definition for u(_, t) and u,(_'). The axial acoustic energy flux,

lax, can now be written as a double summation

oo [( M . ._

s=-_¢ _=-_ poco (C.8)

- .-)]+ pocoMus(x) uu(x e-i(s--/z)Bf2t.

Both p_(Z) and uu(_') can be written as sums of modal pressure patterns as in Eq.

(4.21). Thus

OO

Ps(X)-_ _ 2 prnns _3rn(t_rnn r)e i(rn¢-'rmnsxl)

rn oo n--1

(c.9)

O0

k=--_ l=l

(C.lO)

The modal coefficients Pmns and um_s are not independent, but are related through the

axial momentum equation,

0u u0U 10p =0. (C.II)
_+ 0x_ +po0x--T

Let the pressure and axial velocity be given, for each harmonic, by the real parts, respec-

tively, ofp, exp(-isBf_t) and us exp(-isSftt). Then Eq. (C.11) reduces to

-isBf_us + Oxl +
I Op_ _ O. (C.12)

po Oxl
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If Eqs. (C.9) and (C.10) are substituted in Eq. (C.12), the following relationship is obtained,

where

-- Am_,8

Umn_ poU Pmn_, (C.13)

Am_, = 7m_, (C.14)
sB_/U + %.,.,,-.,"

The axial acoustic energy flux can now be written entirely in terms of Pmn,:

(]IX

OO O_ OO

m oo n=l k=--c_ t=l

O0 OQ

X E E [M2 -- (1 + M 2) aktt, + Amns aktt,]
poU

[ ] •x e -i (.y,,_,_s--_kt_,)zl-(s--_)Bnt Pmns Pke_.

Using this relation and Eq. (C.2), then

(c.15)

rn cx_ n----1 k=--e_ £----1

X m

=IBn

2_rpoU E E [M 2 - (1 + M 2) Aktt, + Am,_, Aktt,]
, e_ t_=-_-_r/Bfl

O0

E

× e-i [(-r,,,,,,--rkt,,)::l--(,-t,)Bnt] Pm_, P_t_dt =

OC O0

Z Cm('m 
_mm oo n=l k=--cx:_ l=l

1 . .

× _ [M 2 - (1 + M 2) Akt , + Am,, Akt,]

× e -i('r'_'_'-'Ykt_)x* Pmns Pkt,"

(c.16)

Note that in obtaining Eq. (C.16), those terms in the integrand for which tt _ s, are

periodic in t over the interval 2rc/Bf_, and thus they average out to zero and do not

contribute to the integral.
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Substituting for < Iaz > in Eq. (C.1), the sound power is found by performing the

integration over the cross-section of the duet. Utilizing the orthogonality conditions that

exist, to eliminate product terms involving different modes, we find that

Power =

2,r rD

ii< >
o rH

oo

×EE

poU

oo

E [M2 - (1 + M 2) A_n s + IAmnsl 2] Ipm,_sl 2,
m=--oo n=l S=--O0

(c.17)

where the integral over the cross-sectional area of the duct A n is written explicitly in terms

of r and ¢ coordinates.

The term in the square brackets which, henceforth, we denote as Gmns, can be sim-

plified, resulting in

Gmn, = _M2_a(sB_/U)km"s (C.18)

[sS_/co 5= Mk,...] 2 '

where the upper set of signs applies upstream of the stator and the lower set applies

downstream. In terms of Gin,s, then, we have

- Z (c.10)Power - Gm_s IPmr_ 12.
poU rn=-oo n=l s=-oo

Finally, recalling that the index m is related to the summation indices s and q through

the relation m = sB - qV, Eq. (C.19) becomes

Power__ 7r(rD2-r2) _ _ _ G,,_,_.ipm..[ 2. (C.20)

P°U q=--c¢ n=l s=--c¢
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APPENDIX D

FILON'S INTEGRATION RULE

Filon's integration rule applies to integrals of the form

b

/ f(x)e'g(_)d.% (D.I)

a

where the phase function g(x) is a "large" linear function of x, so that use of the trapezoidal

rule or Simpson's rule would require that the interval of integration be divided into many

subintervals to obtain an accurate answer. Filon's rule is obtained by assuming that the

function f(x) can be approximated by a quadratic function, but the exponential function

exp[ig(x)] is integrated exactly. To extend this procedure to integrals wherein g(x) is not

a linear function of x, we need only approximate it as a linear function within each x

subinterval. The most straightforward procedure is to approximate both f(x) and g(x) as

linear functions of x. For example, to compute the following integral

b

I = f f(x) eig(X)dx, (D.2)

O,

divide the interval (a,b) into g equal subintervals of length h = (b - a)/g. The integral

over the nth subinterval is then

z._, +h

I,_ = / f(x) eig(X)dx. (D.3)

X_

To compute this integral, approximate both f(x) and g(x) as linear functions:

f(x) = fn + (fn+l - fn)(X--h xn), (D.4)

g(x)---g'_ +(g'_+l-g'_)( x-xn )h ' (D.5)

where fn = f(x,_), and so on. Carrying out the integrations, we obtain
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I,_ = h(a*fn + afn+l) e0°, (D.6)

where

1

go= _(g. + g.+,), (D.7)

1
(D.8)

sinA + i(sinA c27 ) (D.9)a_ 2.x \-_

and a* is the complex conjugate of a. When A ---* 0, the integral over the nth subinterval

becomes

h

& = _(A + A+_), (D.IO)

which is the trapezoidal rule.

If an even number of subintervals are used, it is also possible to approximate f(x) as

a quadratic function (over any two neighboring subintervals) while leaving g(x) as a linear

function of x. This integration scheme reduces to Simpson's rule when g(x) is constant.

Both the trapezoidal and the quadratic versions of Filon's rule have been tried. Because the

quadratic version did not seem to improve the convergence significantly over the simpler

trapezoidal rule, the latter scheme is used in the v072 program.
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APPENDIX E

NUMERICAL SOLUTION OF THE INTEGRAL EQUATION

FOR THE BLADE LOADING

As discussed in Chapter 5, the elemental blade loading function fs (y/b) is the solution

of Eq. (5.8), which with subscript s suppressed in this appendix, becomes

1

This integral equation contains two basic difficulties. They are:

(a) the solution f(z/b) has a singularity of the type (z ÷ b)-½

at the leading edge (z = -b), and

(b) the kernel function Kc(y/b) contains both a Cauchy

singularity (l/y) and a logarithmic singularity at y = 0.

Difficulty (a) is circumvented by introducing the chordwise transformations z/b ---- cos 8

and y/b---- cos¢. Equation (E.1) then becomes

11"
e _c°sa = Kc(cos0 - cos¢) F(_p) de, (E.2)

where F(¢) = f(cos¢) sine. Whereas f(cos¢) is singular at ¢ = % F(¢) is not. Thus

the integral equation is solved for F rather than for f itself. Difficulty (b) is overcome by

special treatment of the logarithmically singular part of the kernel.

To solve Eq. (E.2), we apply the method of collocation. That is, the integral on the

right-hand side of Eq. (E.2) is required to equal the forcing function on the left-hand side

at the N points

8m ---- (m- 1/2)7r;

The equations to be solved are then

e i_c°s°_ = I(Om);

(E.3)

m = 1,... ,N, (E.4)
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where

i(o) = f Kc(cosO- cos¢) F(¢) &b. (E.5)

In computing I(8) by evaluating the right-hand side of Eq. (E.5), the points

q.,e=&c/N, g=O, 1,...,N, (E.6)

are used.* Having the collocation and integration points interlaced has the dual effect of

avoiding the point ¢ = 0, where Kc is singular, and of ensuring that the solution obtained

satisfies the Kutta condition, which requires that F = 0 at the trailing edge.

The logarithmic portion of the kernel function must be isolated for special treatment.

Thus,

Kc(y/b) = K1 (y/b) + G(y/b) log ly/bl (E.7)

and

I(O)=II(O)+IL(O), (E.8)

where

71"

Ii(O) = f Kl(cose-
0

cos ¢) F(_b) de,

71"

IL(O)= f C(cosO-
0

cos¢) log I cosO - cos¢ I F(¢) de.

The trapezoidal rule suffices to compute 11(0),

(E.9)

(E.10)

N
7r

11(0) = ___ -_ Be Kl(cos0-cosec)F(¢_), (E.11)
e----0

* Because F(0) = 0, use of N+ 1 integration points as called for in Eq. (E.6) introduces

only N unknowns F(&c/N), for g = 1,-.., N.
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where B0 = BN = 1/2, while Be = 1 otherwise; but a special integration rule, devised by

Whitehead (Refs. 20, 21) is required for the logarithmic portion of the kernel. Whitehead's

integration rule is given as

N
7r

IL(O) = _ -_ BtG(cosO - cosec)log I cos0 - cos_lSd0),
t=0

where the Bt's are the same weighting functions as defined above, and

(E.12)

st(o) = -{log2 N }+ 2 E _1Bs cos(s0) cos(sgTr/N) . (E.13)
s=l $

Note that because of the comment in the footnote on page 57, the summations in Eqs.

(E.11) and (E.12) actually begin at _ -- 1 rather than g = 0. Hence by combining I1(0)

and IL (8), the integral equation is reduced to the following set of algebraic equations for

the unknowns F(gzc/N),

ei_: co_{(m-t/2)_/N =

N

E A,_F(glr/N), m= 1,...,N, (E.14)
£----1

where

and

Amt = -_ Be Kc(x) + G(x)[St(Orn) - log [x[]}

x = cos(0m) - cos(Ot). (E.16)

Any standard matrix package which handles equations with complex coefficients can be

used to solve these equations.

- 58 -



REFERENCES

1. Ventres, C.S., M.A. Theobald, and W.D. Mark, "Turbofan Noise Generation,

Volume 1: Analysis," NASA CR-167951, July 1982.

2. Ventres, C.S., M.A. Theobald, and W.D. Mark, "Turbofan Noise Generation,

Volume 2: Computer Programs," NASA CR-167952, July 1982.

3. Topol, D.A. and D.C. Mathews, "Rotor Wake/Stator Interaction Noise Prediction

Code, Technical and User's Manual," NASA Contract No. NAS3-25952 (Task 10)

Report, October 1992.

4. Danda Roy, I., W. Eversman, and H.D. Meyer, "Improved Finite Element Modeling

of the Turbofan Engine Inlet Radiation Problem," NASA Contract No. NAS3-25952

(Task 10) Report, April 1993.

5. Kemp, N.H. and W.R. Sears, "Aerodynamic Interference between Moving Blade

Rows," Journal of Aeronautical Sciences, 20, 9, 1953, pp. 585-597.

6. Kemp, N.H. and W.R. Sears, "The Unsteady Forces due to Viscous Wakes in Turbo-

machines," Journal of Aeronautical Sciences, 22, 7, 1955, pp. 478-483.

7. Fleeter, S., "Fluctuating Lift and Moment Coefficients for Cascaded Airfoils in a

Nonuniform Compressible Flow," Journal of A/rcraft, 10, 2, 1973, pp. 93-98.

8. Kaji, S., "Noncompact Source Effect on the Prediction of Tone Noise from a Fan

Rotor," AIAA Paper 75-446, March 1975.

9. Kobayashi, H., "Three Dimensional Effects on Pure Tone Fan Noise due to Inflow

Distortion," AIAA Paper 78-1120, July 1978.

10. Kobayashi, H. and J.F. Groeneweg, "Effects of Inflow Distortion Profiles on Fan Tone

Noise," AIAA Journal, Vol. 18, No. 8, August 1980, pp. 899-906.

11. Namba, M., "Three-Dimensional Analysis of Blade Force and Sound Generation for

an Annular Cascade in Distorted Flows," Journal of Sound and Vibration., Vol. 50,

February 1977, pp. 479-508.

- 59 -



12. Namba, M., "Lifting SurfaceTheory for a Rotating Subsonicor TransonicBlade Row,"

Aeronautical ResearchCouncil, Reports and Memoranda No. 3740, 1974.

13. Reynolds,B., B. Laksminarayana,and A. Ravindranath, "Characteristics of the Near

Wakeof a Compressoror FanRotor Blade," AIAA Journal, Vol. 17, No. 9, September

1979, pp. 959-967.

14. Reynolds, B. and B. Laksminarayana, "Characteristics of Lightly Loaded Fan Rotor

Blade Wakes," NASA CR-3188, October 1979.

15. Ravindranath, A. and B. Laksminarayana, "Three Dimensional Mean Flow and Tur-

bulence Characteristics of the Near Wake of a Compressor Rotor Blade," NASA CR-

159518, June 1980.

16. Majjigi, R.K. and P.R. Gliebe, "Development of a Rotor Wake/Vortex Model,

Volume 1: Final Report," NASA CR-174849, June 1984.

17. Topoi, D.A. and D.A. Philbrick, "Fan Noise Prediction System Development: Wake

Model Improvements and Code Evaluations," NASA Contract No. NAS3-25952 (Task

10) Report, April 1993.

18. Bliss, D.B., K.L. Chandiramani, and A.G. Piersol, "Data Analysis and Noise Predic-

tion for the QF-1B Experimental Fan Stage," NASA CR-135066, August 1976.

19. Goldstein, M.E., Aeroacoustics, McGraw-Hill, New York, 1976.

20. Whitehead, D.S., "Force and Moment Coefficients for Vibrating Aerofoils in Cascade,"

Aeronautical Research Council Reports and Memoranda, No. 3254, February 1960.

21. Smith, S.N., "Discrete Frequency Sound Generation in Axial Flow Turbomachines,"

Aeronautical Research Council Reports and Memoranda, No. 3709, March 1972.

22. Mark, W.D., "Characterization of Rotor Inlet Turbulence for Rotor Noise Predic-

tions," Bolt Beranek & Newman Inc. Technical Memorandum, No. 486, December

1978.

23. Hanson, D.B., "Coupled 2-Dimensional Cascade Theory for Noise and Unsteady Aero-

dynamics of Blade Row Interaction in Turbofans, Vol. 1 - Theory Development and

Parametric Studies," NASA CR-4506, January 1994.

- 60 -



ACKNOWLEDGEMENTS

The authors would like to thank Donald B. Hanson and David A. Topol of

Pratt & Whitney, R.M. Nallasamy of NYMA, Inc., and Edward J. Rice of E.J. Rice

Consulting for their helpful critiques and suggestions. Additionally, we thank Donald B.

Hanson, along with Dennis L. Huff and John F. Groeneweg of NASA Lewis Research

Center, for originally suggesting this project and for their support.

Acknowledgement should also go to the authors of the original V072 documentation,

C.S. Ventres, M.A. Theobald and W.D. Mark, from whose report we borrowed, intact,

much of the material used herein.

- 61 -



Form Approved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Public rlcorlin9 burden Ior this colleclionOf informationis ostimaxedto avecage 1 hourper respo_, includingthe time for reviewing,irmtruc_om;,seamhir_ exk;tin9 data soumes.
gatheringand malntainin_lthe data needed.,_ co,rn_)ng and reviewingthe c_lectio(1Of information. Se.nd _c(_mmcntSre0atding th_ butt_en estimaie or any other aspect Ofthis
cofk)ctionOf information,inc=uoing suggeclmCtslot reoucingthts bur_..., to wm,hmgton Heaoquarters:_erv_. uJrectoral?tot mfom_.}on UperatK_s _ HepOrlS,1215 Jefferson
Davis Highway. Suite 1204, Adinglon, VA 222024302, and to the Oflme of Management and Budget.Paper_ork ReductaonProject (0704-0188). Washzngton.De 20503.

1. AGENCY USE ONLY (Leave blanlO 2. REPORTDATE 3. REPORT TYPE AND DATES COVERED

March 1996 Final Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Aeroacoustic Analysis of Turbofan Noise Generation

6. AUTHOR(S)

Harold D. Meyer and Edmane Envia

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

United Technologies Corporation
Hamilton Standard Division

Windsor Locks, Connecticut 06096

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

WU-538--03-11

C-NAS3-26618

C-NAS3-27186

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-I0148

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR--4715

11. SUPPLEMENTARY NOTES

Harold D. Meyer, United Technologies Corporation, Hamilton Standard Division, Windsor Locks, Connecticut 06096 (work funded by
NASA Contract NAS3-26618) and Edmane Envia, NYMA, Inc., 2001 Aerospace Parkway, Brook Park, Ohio 44142 (work funded by
NASA Contract NAS3-27186). Project Manager, Dennis L. Huff, Propulsion Systems Division, NASA Lewis Research Center,
organization code 2770, (216) 433-3913.

12a. DI STRIBUTION/AVAILAIB]LITY STATEMENT

Unclassified - Unlimited

Subject Categories 07 and 71

This publication is available from the NASA Center for Aerospace Information, (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report provides an updated version of analytical documentation for the V072 Rotor Wake/Stator Interaction Code. It

presents the theoretical derivation of the equations used in the code and, where necessary, it documents the enhancements

and changes made to the original code since its first release. V072 is a package of FORTRAN computer programs which

calculate the in-duct acoustic modes excited by a fan/stator stage operating in a subsonic mean flow. Sound is generated
by the stator vanes interacting with the mean wakes of the rotor blades. In this updated version, only the tonal noise

produced at the blade passing frequency and its harmonics, is described. The broadband noise componenz analysis, which

was part of the original report, is not included here. The code provides outputs of modal pressure and power amplitudes
generated by the rotor-wake/stator interaction. The rotor/stator stage is modeled as an ensemble of blades and vanes of

zero camber and thickness enclosed within an infinite hard-walled annular duct. The amplitude of each propagating mode
is computed and summed to obtain the harmonics of sound power flux within the duct for both upstream and downstream

propagating modes.

14. SUBJECT TERMS

Rotor/stator interaction; Rotor wake; Fan noise generation; Cascade;

Source noise modeling; Duct acoustics

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

73
16. PRICE CODE

A04

20. UMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102





°_ o_"

_ _ _ o>_
=c _. Ox" m -"

O3 m _
o
z _
q _
211

c

3


